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A B S T R A C T

The usefulness of biodiversity indicators strongly increases if accompanied by measures of uncertainty. In the
case of indicators that combine population indices of species, however, the inclusion of the uncertainty of the
species indices has shown to be hard to realize, usually due to imperfections in monitoring programmes. Missing
values and time series of different lengths preclude the use of analytical approaches, whereas bootstrapping
across sites requires the raw abundance data on the site level, which may not always be available. Sometimes
bootstrapping across species rather than sites is opted for, but this approach ignores the uncertainty attached to
species indices. We developed a method to account for sampling error of species indices in the calculation of
multi-species indicators based on Monte Carlo simulation of annual species indices. The construction of con-
fidence intervals enables various trend assessments, like testing for linear or smooth trends, testing for changes
between two time points, testing the significance of a suspected change-point and testing for differences between
two multi-species indicators. Here, we compare our method with conventional methods and illustrate the
benefits of our approach using Dutch breeding bird indicators.

1. Introduction

In order to realize the international ambition to slow and eventually
halt the ongoing global decline in biodiversity, as expressed in the
context of the Convention on Biological Diversity (Butchart et al., 2010;
Secretariat of the Convention of Biological Diversity, 2014), it is in-
dispensable to have reliable instruments to measure progress towards
set targets. Biodiversity indicators are increasingly used to monitor
trends in biodiversity at various habitats and scales (Biala et al., 2012;
Butchart et al., 2010; Szabo et al., 2012; Van Strien et al., 2016), the
most popular being the combined population trends of individual spe-
cies (Brereton et al., 2011; Freeman et al., 2001; Gregory et al., 2005;
Loh et al., 2005). Such multi-species indicators (MSI) have the ad-
vantage of being relatively insensitive to the fluctuations of individual
species, thus helping scientists, conservationists and decision makers to
better understand the dominant factors influencing biodiversity in a
region, country, continent or the entire biosphere. Until now the de-
velopment of MSIs has mainly focused on methods to calculate the
mean index of species, of which the geometric mean of species indices
appears one of the most appropriate to use (Buckland et al., 2005, 2011;

Lamb et al., 2009; Van Strien et al., 2012). Popular examples of MSIs
include the global Living Planet Index (Collen et al., 2009; Loh et al.,
2005), the European Grassland Butterfly Indicator (Van Swaay et al.,
2013), and the European Wild Bird Indicators (Gregory et al., 2005;
Gregory and Van Strien, 2010).

The usefulness of MSIs and trends in MSIs is strongly increased if
accompanied by proper measures of uncertainty. Without these, it be-
comes problematic to test whether changes in the indicator are statis-
tically significant and/or to test the found trend against other in-
dicators. The main sources of uncertainty in MSIs are sampling error
and process noise. Sampling error refers to the uncertainty of the spe-
cies indices, which in most monitoring programmes must be considered
as “sampling error in a broad sense”: the “pure sampling error” caused
by sampling only part of the population, complemented by sources of
variation like measurement bias, imperfect detection and missing va-
lues. This part of the variation in time series is also called “observation
error” (e.g. Dennis et al., 2006). Process noise refers to the interannual
variation between indices, the “process” being the trend in population
numbers which usually is the main objective of a monitoring pro-
gramme. Surprisingly, although the sources of uncertainty of MSIs are
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theoretically well-known it often proves a challenge to construct con-
fidence intervals (CIs) for both MSIs and trends therein that take into
account both sampling error and process noise. We know of three
common methods, none of which is completely satisfying:

(1) CI based on bootstrapping across species

In this approach (for instance Collen et al., 2009; Craigie et al.,
2010; Eaton et al., 2016) the trend of each species is considered as a
replicate of the MSI. This approach is useful to assess the robustness of
the MSI against species selection, but it neglects sampling error in the
species indices. In addition, it suffers from a conceptual drawback: it is
questionable to include interspecific variation in the confidence inter-
vals of MSIs. The rationale of testing against variation between species
is that the species are randomly sampled from a large group, but this
rationale is unjustified as species to represent an MSI are typically de-
liberately selected. In addition, bootstrapping species may yield wide
confidence intervals if the trend of even a single species deviates from
the trend of the other selected species for the MSI. Consequently, even
evident shifts in the mean of the MSI may remain statistically insig-
nificant.

(2) CI based on interannual variation

This approach is used for the European Wild Bird Indicators and the
Living Planet Index (Butchart et al., 2010; Gregory and Van Strien,
2010; Loh et al., 2005), amongst others. Again, in these indicators
sampling error is neglected and confidence intervals for trends in MSIs
only include the interannual variation. For the European Wild Bird
Indicators (Gregory et al., 2005) an analytical approach is presented to
calculate CIs for the MSI that takes into account sampling error. How-
ever, this approach cannot be extended to trend assessments and it fails
whenever a species index is missing for a particular year. Thus, as is the
case for other indicators, sampling error is neglected in the trend as-
sessment for European Wild Bird Indicators, even when available. The
latter is inevitable, as the TrendSpotter software used for trend calcu-
lation cannot include standard errors of yearly MSIs (Soldaat et al.,
2007; Visser, 2004). TrendSpotter can efficiently model flexible trends
and their CIs by applying the Kalman filter. Unfortunately, only relative
weighting factors can be attached to the MSIs. Absolute weighting
factors like the standard errors of the MSI would not lead to proper CIs
for the calculated trends.

(3) CI based on bootstrapping of sites

This approach properly takes into account sampling error and can
be applied in a randomized monitoring scheme like the British
Farmland Bird Indicator (Freeman et al., 2001). Bootstrapping on the
site level, however, cannot be applied if sites are not a random sample
of the population, as in many volunteer-based monitoring programmes.
Obviously, bootstrapping of sites can also not be applied when data are
not available on the site level, for example when MSIs are constructed
using time series obtained from the literature (as in the Living Planet
Index) or from national reports (as in the European Wild Bird In-
dicators).

An approach to take into account sampling error in MSIs that, to our
knowledge, has not been explored so far is the use of standard errors of
the species indices. In this paper we describe Monte Carlo procedures to
generate confidence intervals for MSIs and trends in MSIs based on the
standard errors of species indices. The method overcomes the above-
mentioned conceptual and practical obstacles, and offers several op-
portunities for testing and comparing trends in MSIs. Here, we first use
conventional approaches to calculate an MSI with confidence intervals
from an ideal simulated data set, without missing values. Subsequently,
we apply our method to the same simulated data, and compare the
outcome to the results of the conventional approaches for validation.

Thereafter we illustrate our method using Dutch breeding bird data.
Finally, we show how the method can be used to test for change-points
in the MSI and trend differences between MSIs and some additional
possibilities for trend assessment.

2. Methods

2.1. Calculating MSIs and confidence intervals by Monte Carlo simulation

The starting point of the Monte Carlo (MC) method is a data set with
species indices and standard errors, for instance calculated with the
TRIM software (Pannekoek and Van Strien, 2005). The index value in
some pre-defined base year is set to 100 with standard error zero (step 1
in Fig. 1). The indices in the other years are expressed as percentage of
the base year and their standard errors are a function of the variance in
the specific year and the base year. Our method assumes that the
standard errors are adjusted for the effect of serial correlation between
years, which is the standard approach in most monitoring programmes.
The indices are approximately log-normal distributed (Pannekoek and
Van Strien, 2005) and the standard errors are used for MC simulation.
Each available yearly index for each species is simulated 1000 times by
drawing from a normal distribution N(μ,σ) with μ= the natural loga-
rithm of the index and σ= the standard error of the index on the log
scale (step 2). The standard error of the index on the log scale is as-
sessed by the Delta-method (see e.g. Agresti, 1990) as SE(log scale)
= SE(index scale)/index. After simulation the same base year
(index = 100) is chosen in each simulation for each species and the
other years are expressed as a percentage of the base year (step 3 and 4;
for the imputation of missing indices, see below). The mean and stan-
dard error of the 1000 MSIs in each year are calculated and back-
transformed to the index scale (step 5). The arbitrarily chosen number
of 1000 simulations is a trade-off between computational efficiency and
accuracy, to insure consistency in estimates across runs. This number
could be increased if large variability in the results is observed between
different runs.

2.1.1. Missing data
A complication in the procedure described in Section 2.1 arises if

some species have missing indices. In practice these missing values will
often occur at the beginning or end of the time series (due to differences
in monitoring schemes between species). These missing indices must be
imputed in order to set the same base year for each species, which is
necessary to calculate geometric mean indices. We apply chain indexing
(Crawford, 1991) to impute missing species indices, using the relative
year-to-year population development in species without missing values
(step 3 in Fig. 1). Thus, if all species without missing data show a mean
increase of, say, 10% from year t to t + 1, this percentage is used for
imputing the missing data points in species with missing data for year t
+ 1. Note that in each MC simulation different imputed values will be
generated. After imputation we proceed with the common procedure to
calculate MSIs and standard errors. These standard errors for years with
missing species indices do not include the uncertainty caused by im-
putation.

2.1.2. Handling extreme cases
Using the geometric mean in biodiversity indicators has many ad-

vantages (Buckland et al., 2005, 2011; Van Strien et al., 2012), but the
downside is that it makes such indicators oversensitive to strongly
fluctuating, eruptive, strongly increasing or strongly decreasing species.
For such species, index values may show extreme yearly changes or
may become extremely large, zero, or close to zero. Especially small
indices may have strong and unwanted (as they usually represent very
low population numbers) effects on the MSI.

Zero values of indices need special treatment anyhow, as the loga-
rithm of zero is undefined. Often an arbitrary small amount (e.g. 0.1 or
1) is added to zero indices before log transformation. The effect on the
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index and even more on the MSI, however, strongly depends on the
chosen amount to add to zero. In the Living Planet Index, zero indices
are replaced by 1% of the mean of all indices for a species (Collen et al.,
2009; Loh et al., 2005). In addition, yearly changes in indices of a
factor> 10 are set to missing values (McRae, pers. comm., 2015). The
choice how to treat “noisy” indices is up to the researcher and may
depend on the goals of the study. We apply the following rules:

• For strongly increasing (e.g. invasive) species, the last year is set to
100. All indices in the preceding years lower than 1 are truncated to
1 and their standard error is set to 0.

• For strongly decreasing species, the first year is set to 100. All in-
dices in the subsequent years lower than 1 are truncated to 1 and
their standard error is set to 0.

• Yearly changes of a factor> 10 are truncated to 10 (in case of an
increase) or 0.1 (decrease). This rule dampens the extreme yearly
variation in the MSI caused by strongly fluctuating (e.g. eruptive)
species.

2.2. Trend classification and trend comparison by Monte Carlo simulation

The MSI pattern over time may show noisy behaviour. To find
trends and uncertainty therein we also apply a MC simulation proce-
dure. 1000 MSIs are simulated based on a normal distribution with
μ = the natural logarithm of the MSI and σ= its standard error (as
derived in Section 2.1) on the log scale (step 5 in Fig. 1). For each of the
1000 simulated MSIs two trend methods are applied: a linear OLS
straight line and a smooth trend estimated by LOESS-regression
(Cleveland, 1993) with default settings for span (0.75) and degree (2)
(step 6). Standard calculus provides mean trends, standard errors and
confidence limits of the trends, each of which are back-transformed to
the index scale (step 7). The 1000 simulated MSIs offer the opportunity
to compare trends and to test several additional trend parameters (see
Section 3.3). We note that MSIs have value 100 in the base year chosen,
with zero uncertainty (as a consequence of our indexing method).
However, the trend models chosen here are not ‘forced’ to have a value
100 in the base year. Therefore, uncertainties in mean trends are not
zero in base years.

Fig. 1. Schematic representation of the Monte Carlo
method to calculate standard errors (SE) and con-
fidence intervals (CI) for multi-species indicators
(MSI). The numbers refer to the consecutive steps in
the Monte Carlo method (see text).
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2.2.1. Trend classification
The 1000 linear or smooth trends were used to classify trends in

categories in several ways. First, linear trends and standard errors were
back-transformed from the additive log scale by applying the inverse of
the Delta-method described in Section 2.1. On the resulting multi-
plicative scale a trend of 1.00 means no change, a trend of 1.05 means
5% increase per year and 0.95 means 5% decrease per year. A 95%
confidence interval for the trends was calculated based on the normal
distribution. The multiplicative trends were used to classify trends as in
Table 1. Separate linear trends were calculated before and after a sus-
pected change-point in each of the 1000 simulations as well as the
difference between both trends. The mean and standard error of these
1000 differences were used to construct a 95% confidence interval. The
trends are significantly different when this interval does not include 0.
The smooth trends are primarily meant for presentation purposes, but
can also be used to assess the difference between two years. For in-
stance, the first and last year may be compared by calculating the 1000
differences in the smooth trend value between these years and the
difference can then be tested statistically on the basis of the mean and
confidence interval as described above. This yields an overall change
e.g. “significant 40% increase from 1990 to 2014”.

2.3. Validation on simulated data

In order to validate the Monte Carlo approach we applied the
method to a computer-generated data set consisting of Poisson counts of
three species during 20 years in 100 random sites and no missing data.
In this ideal data set the randomness of the sites allowed for the ap-
plication of a bootstrapping approach (cf. Freeman et al., 2001),
whereas the non-missing data allowed the application of linear ap-
proximation (cf. Gregory et al., 2005). Our MC approach should yield
approximately the same indices and confidence intervals as the two
conventional methods. Linear approximation was applied to species
indices and standard errors that were calculated with TRIM (Pannekoek
and Van Strien, 2005).

2.4. Illustration on data of Dutch breeding birds

We illustrate our Monte Carlo approach using abundance data of
breeding birds collected by skilled volunteers through the Breeding Bird
Monitoring Programme (BMP) in the Netherlands (Van Turnhout et al.,
2008). The Dutch BMP is based on territory mapping in fixed study
sites. Bias due to imperfect detection is reduced in the BMP by pre-
scribing that repeated mappings are performed at periods of high de-
tection (both during the season as well as during the day). By clustering
the repeated mappings (Bibby et al., 2000) the resulting number of
territories for a species at a site comes as close as possible to the true
population size. All common and scarce breeding birds in the Nether-
lands are covered. The number of study plots grew from about 1000 per
year in 1990 to about 2000 at the end of the study period. The Dutch
BMP has been used to assess trends in bird fauna (Le Viol et al., 2012;
Van Turnhout et al., 2010), and the data also contribute to pan-Eur-
opean biodiversity indicators (Gregory et al., 2005). Population de-
velopment of a species is assessed by calculating yearly indices and

standard errors using the TRIM software (Pannekoek and Van Strien,
2005). We compiled indicators for woodlands (26 species), marshlands
(including fresh water; 29 species) and open natural habitats (coastal
dunes and saltmarshes, heathlands; 22 species). Typical breeding bird
species for these habitats were selected using the Species Specialization
Index (SSI), which uses the variance of average densities among twelve
habitat classes (Julliard et al., 2006), derived from BMP data around
1990 (start year of trends). Species with an SSI of> 1.25 are considered
as specialists for that particular habitat. Specialists depending largely
on one particular habitat are considered to be most sensitive for
changes in quality or quantity in that habitat, and therefore are the
most suitable indicator species (Julliard et al., 2006). Rare species, for
which no reliable densities could be calculated, were appointed on the
basis of expert judgement. The species indices that are used as input for
the indicator are based on study sites in that particular habitat only
(most specialists occur in low densities in other habitats too).

3. Results

3.1. Method validation

Fig. 2 shows the MSIs of the computer-generated annual indices of
the three fictitious species and their CIs derived by the Monte Carlo
approach and by two alternative procedures: the analytical approach as
advocated by Gregory et al. (2005) (Fig. 2a) and bootstrapping of sites
(Fig. 2b). As expected, the three approaches yield practically the same
MSIs and CIs. The CIs of the bootstrapping method are slightly smaller
than for the Monte Carlo method.

3.2. Illustration on Dutch breeding bird data

Fig. 3 shows the standard output of the MC approach for typical
breeding bird species in three habitat types. The width of the con-
fidence intervals of the trends clearly varies between habitats and clo-
sely corresponds to the mean size of the standard errors of the MSIs.
This is a direct consequence of the MC approach that takes into account
the standard errors of the species indices when estimating standard
errors for the MSIs (step 1–5 in Fig. 1). Linear trends and standard er-
rors were assessed as described in step 6 and 7 in Fig. 1. Based on the
standard errors the overall trends and trends for the last 10 years were
classified as indicated in Fig. 3. The overall trends corresponded to the
number of increasing, stable and decreasing species in the habitat types:
the increasing trend in marshlands is caused by 17 increasing, 3 stable
and 9 decreasing species; the stable trend in woodlands is caused by 11
increasing, 5 stable and 10 decreasing species; the decreasing trend in
open habitats is caused by 5 increasing, 5 stable and 12 decreasing
species.

Not surprisingly, the long-term linear trends for the MSIs in the
three habitat types differ significantly. Comparing the differences be-
tween the 1000 long-term trends in each habitat showed that the yearly
change in marshlands was 3.15% larger than in woodlands
(p < 0.001) and 7.64% larger than in open habitats (p < 0.001) and
the mean yearly change in woodlands was 4.50% larger than in open
habitats (p < 0.001). Over the last 10 years these differences were less

Table 1
Trend classification. CI = confidence interval, CL = confidence limit.

Category Criteria/description

Strong increase lower CL > 1.05 (significant increase of more than 5% per year)
Moderate increase 1.00 < lower CL < 1.05 (significant increase, but not significantly more than 5% per year)
Stable CI includes 1.00 AND 0.95 ≤ lower CL AND upper CL ≤ 1.05 (no significant increase or decline, likely that changes are smaller than 5% per year)
Uncertain lower CL < 0.95 AND 1.05 < upper CL (no significant increase or decline, unlikely that changes are smaller than 5% per year)
Moderate decline 0.95 < upper CL < 1.00 (significant decline, but not significantly more than 5% per year)
Steep decline upper CL < 0.95 (significant decline of more than 5% per year)
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pronounced, as may be expected from Fig. 3: comparing the 1000 short-
term trends in each habitat showed that the differences between
marshlands and woodlands (1.9%, p = 0.091) and between woodlands
and open habitats (0.9%, p = 0.259) were not significant. Only the
difference in the short-term trends between marshlands and open ha-
bitats was statistically significant (2.7%, p = 0.022).

3.3. Additional trend assessments

Additional trend assessments showed that the percentage change
between the first and the last year as well as the percentage change over
the last ten years of the time series were significant in marshlands and
open natural habitats, but not in woodlands (Fig. 4). Finally, trend
changes within the time series were assessed by inspection of several
suspected change-points. In marshlands and open natural habitats a

Fig. 2. Comparison of the Monte Carlo approach with (a) linear approximation and (b)
bootstrapping of sites in a computer-generated dataset with indices of three species over
20 years. The mean of the simulated annual indices (black line) is the same for each
method. The confidence intervals derived by the Monte Carlo approach is indicated by the
grey area. Confidence intervals derived by linear approximation and bootstrapping of
sites are indicated by dotted lines.

Fig. 3. Multi-species indices (point symbols) and standard errors (error bars) for typical
breeding birds of three habitats as calculated in step 1–5 in Fig. 1. The black line and
shaded area represent the smoothed trend and confidence interval as calculated in step 6
and 7 in Fig. 1. The trend classifications are based on linear trends (see text).

Fig. 4. Decomposition of the smooth trends of typical birds of a) marshlands, b) wood-
lands and c) open natural habitats.
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significant change-point was found in 2003. In woodlands no sig-
nificant change-point could be detected (only 2005 is shown in Fig. 4,
but several other suspected change-points were also tested).

4. Discussion

4.1. Validation and applications

The Monte Carlo method we describe is a straight-forward and
conceptually sound method to estimate confidence intervals around
multi-species indicators. The method produces almost exactly the same
results as both the analytical approach and bootstrapping, as we de-
monstrated for the simulated data set. Small differences are caused by
the stochastic nature of both the MC approach and bootstrapping. The
validation test could only be performed in an ideal simulated data set
with random sites and without missing species indices, because of the
prerequisites of the conventional methods. The MC approach, however,
can be applied in many, less restricted situations where species indices
with log-normal error distribution are to be combined. An additional
advantage is the multitude of ways in which the development of the
MSIs in time can be assessed and tested on the basis of the data sets
generated by the MC method. These properties make our approach a
valuable tool for conservationists and decision makers in evaluating the
progress made in nature policy.

Although the main purpose of our method is to calculate confidence
limits around trends in multi-species indicators, one can also apply the
smoothing procedure to year indices and standard errors of single
species. Of course, other flexible trend methods can be applied on the
species level as well, like smoothing splines, generalized additive
models or the Kalman filter (as applied in the TrendSpotter software
mentioned above). However, these methods cannot include the un-
certainty of the species indices.

4.2. Demands on sampling error and type of inference

We illustrated the MC method on indices and standard errors that
were calculated by TRIM. TRIM takes into account ‘pure sampling error’
caused by selection of only a part of all possible sites, but also com-
plementary variation caused by differing population development be-
tween sites and by the imputation of missing values. TRIM uses an ef-
ficient implementation of glm-Poisson regression (Pannekoek and van
Strien, 2005) to account for missing data. This model-based approach
assumes that the yearly observed counts for each of the species in the
BMP are random variables due to natural variation (and possibly
measurement error) around the model expected value. Specifically, in
Poisson regression the counts are assumed to follow a Poisson dis-
tribution which entails that the variance of the counts equals their
expected value. In the TRIM-implementation of Poisson regression this
assumption is relaxed in the sense that the variance is taken to be
proportional to the expected value, with a proportionality factor that is
estimated from the data (overdispersion relative to the Poisson as-
sumption). The indices are calculated by TRIM using the observed
counts as input and the standard errors of the indices are thus de-
termined by the variance of these observed counts (expected value
times overdispersion factor). This model-based type of inference is
different from a design-based inference in which the counts are con-
sidered fixed quantities rather than random variables, but random
variation is introduced by considering the sites as a random sample
from some population. Estimates of indices are then random variables
because they are based on a random selection of sites and these esti-
mates will differ between samples. Standard error estimation will in this
case be based on the observed variation between sites rather than on
the assumption (model-based) of random variation between counts
according to some distribution. Standard errors of species indices may
differ between both types of inference. However, as the MC approach
presented in this paper starts with the standard errors of indices it can

be applied both in a setting of model-based as well as design-based
inference.

4.3. Serial correlation

As our Monte Carlo approach assumes that the standard errors of
the species indices already incorporate the effect of serial correlation
between years, the simulations do not incorporate this serial correla-
tion. In other words, the simulation of a species index or an MSI in a
specific year is not directly dependent on the simulated values in the
previous year. In the examples in this study serial correlation is in-
directly accounted for. As the standard errors of the species indices
calculated by TRIM (Pannekoek and Van Strien, 2005) incorporate the
effect of serial correlation, this effect propagates into the standard er-
rors of the MSIs. Likewise, by simulating MSIs for trend assessment the
effect of serial correlation propagates into the standard errors of the
trend estimates. However, the MSIs themselves are possibly also serially
correlated and this unknown serial correlation cannot be accounted for
in the simulation. The standard errors of the trends should thus be
considered as best approximations with the available data, that neglect
possible serial correlation between MSIs. Incorporating serial correla-
tion between MSIs in the MC simulations would be a further refinement
of the method, but is beyond the scope of this study. In addition, it will
be technically complex and based on our experience with the effect of
serial correlation on the standard errors of species trends, we expect the
effects to be relatively small.

4.4. Features and possible complications

As for the species indices, for the MSI a base year with index 100
and the standard error fixed to zero must be chosen. The base year for
the MSI is not necessarily the first year. In case of less reliable count
data in the beginning of the time series (e.g. due to more missing va-
lues), one may choose to select the last year as base year, which will
cause the CIs of the MSIs and of smooth trends to be wider at the be-
ginning of the time series. In other cases some intermediate base year
may be of interest. In general, the confidence intervals around the base
year are narrower, and widen as temporal autocorrelation decreases
(e.g. Buckland et al., 2011; Studeny et al., 2013). Any choice of a base
year is computationally equally valid and can be made with the output
of the MC simulations. Choosing a different base year only changes the
visual display of the confidence limits of the MSIs and smooth trends,
but it does not influence the linear trend calculation and classification.

The choices we made to calculate the MSI after simulating species
indices may have profound effects on the resulting MSI. First, trun-
cating indices< 1 and setting their standard errors to 0 may strongly
reduce CIs of MSIs and trends. The methodological rationale behind this
choice is that small indices often have relatively large standard errors
that in some situations may cause large stochastic variation in the si-
mulated indices and MSIs. From an ecological point of view it is not
desirable that these small indices have large influence on the MSI, as
they represent relatively low population sizes. An additional advantage
of the truncation rule is that we do not have to choose a small (but
usually influential) value to replace zero-indices in order to be able to
calculate a logarithm. A second choice that may affect the outcome of
MSI-calculation is the chaining method used to impute missing species
indices. Ter Braak et al. (1994) point out some risks of applying chain
indexing to handle missing values. However, they refer to situations
where chain indexing is used to handle missing site counts and not to
species indices as in MSIs. The missing site counts in the BMP, as in
most monitoring programmes, are imputed by the loglinear regression
model and the increased uncertainty of the indices is accounted for in
the SEs. Nevertheless, chain indexing may cause bias in MSIs, especially
when the MSI consists of few species with large year-to-year fluctua-
tions, analogous to “small samples” and “scarce species” mentioned by
Ter Braak et al. (1994). So we recommend to always check the species
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indices visually before inclusion in the MSI. A special case where chain
indexing will always be inappropriate is when a species is not mon-
itored every year, but e.g. every two or three years. Then, the chaining
method cannot calculate any year-to-year ratio for that species and the
species will not contribute to the MSI. In most cases, however, missing
species indices will be concentrated in the beginning of the time series,
due to differences between monitoring schemes. One should be aware
that the MSI for these years only represents the development of the
species for which data are available. A more realistic but often labor-
ious alternative to chain indexing is to model the missing indices on the
basis of data from the species itself. Whatever method is opted for, we
advise to compare MSIs with and without the species with incomplete
time series. If necessary, the MSI should be recalculated for a period of
years with less missing species indices. Whatever the outcome, we ad-
vise to report the pattern of missing species indices and discuss its effect
on the MSI. In the examples in this paper no missing species indices
were encountered. A third influential choice concerns the species se-
lected for the indicator. Some species may have relatively large stan-
dard errors, reflecting the inability of the monitoring programme to
follow the population development accurately. In our indicators we
judge species indices by the mean coefficient of variation (CV) of the
yearly indices (the mean of all standard error/index ratios). The ex-
clusion of species based on statistical arguments comes with the danger
of ignoring ecologically or otherwise interesting species – usually the
rare ones. We recommend to always test the effect on the MSI of stricter
versus more liberal levels at which maximum allowed CV is set.

If base years differ between species the standard error of the MSI in
a specific year becomes a function of the sampling errors of the species
indices in that year and in the different base years. So, unlike the
standard error of a species index the standard error of the MSI can no
longer be interpreted as the variation between that year and the base
year of the MSI. A simple way to avoid this would be to choose the same
base year for each species. However, as mentioned in the methods
section this may lead to extremely high indices in case of species with
low abundances in the base year with undesired effects on the MSI. We
therefore recommend to standardize the base year between species
whenever possible, and otherwise to clearly specify the differences in
base years.

5. Conclusion

Our Monte Carlo simulation approach is a straightforward, easy to
apply and conceptually sound method to take into account sampling
error in multi-species indicators. Unlike bootstrapping of sites, it does
not require the raw abundances per species for each of the surveyed
plots: it can be applied whenever standard errors of the year indices of
individual species are available. As a consequence, different approaches
for index calculation between species are allowed. Contrary to analy-
tical approaches to assess the standard error of the MSI, the Monte
Carlo method still works in the case that not all yearly index numbers of
all species are available. The method not only works in case the annual
indices represent relative species abundance; it also works if the indices
relate to trends in site occupancy, biomass, etc. Given the advantages of
the Monte Carlo method over other methods, we recommend its use for
the calculation of confidence intervals and trends of multi-species in-
dicators whenever possible. In line with this recommendation mon-
itoring programmes should always attempt to collect and report ne-
cessary information on the standard errors of species indices.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.ecolind.2017.05.033.

An R-script with the MC method is freely available at https://www.
cbs.nl/en-gb/society/nature-and-environment/indices-and-trends–
trim–/msi-tool. The script enables the calculation of MSIs and various
trend assessments based on a simple input database with species indices
and standard errors. Several parameters for the analysis can be set, such
as the number of MC simulations, the desired base year, the level for
omitting species with high CV, the year of a suspected change-point, the
period for the calculation of short-term trends and the level for trun-
cation of low indices.
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